Tema 3 El material rodante para viajeros

Iñaki Barrón, Jaime Borrell, Eduardo Romo, José Luis Alfaro, Cristina Contreras Seminario de Ferrocarriles de Pasajeros 15-17 de marzo 2023

Tema 3 - El material rodante para viajeros

- 1. Introducción
- 2. Tipo de servicios y categorías de vehículos
- 3. Tipologías y configuraciones
- 4. Características principales
- 5. Características comerciales
- 6. Características de explotación
- 7. Tecnologías de tracción
- B. Tecnologías de frenado
- 9. Interacción infraestructura vehículo
- 10. Fabricación
- 11. Mantenimiento Comentarios generales

3.1 Introducción

El material rodante para viajeros

Para el transporte de pasajeros se puede utilizar una gran variedad de tipos y tamaños, de vehículos y de trenes:

- Tamaños: desde 50 a 1 600 plazas
- Tipos de tracción: eléctrica, diésel, otros (hidrógeno)
- Arquitectura: uno o dos pisos
- Articulados o vehículos independientes
- Autopropulsados o remolcados

Un tren puede estar formado por:

Un único vehículo

- Una o varias locomotoras remolcando y/o empujando cierto número de vehículos

- Uno o varios trenes autopropulsados unidos entre sí

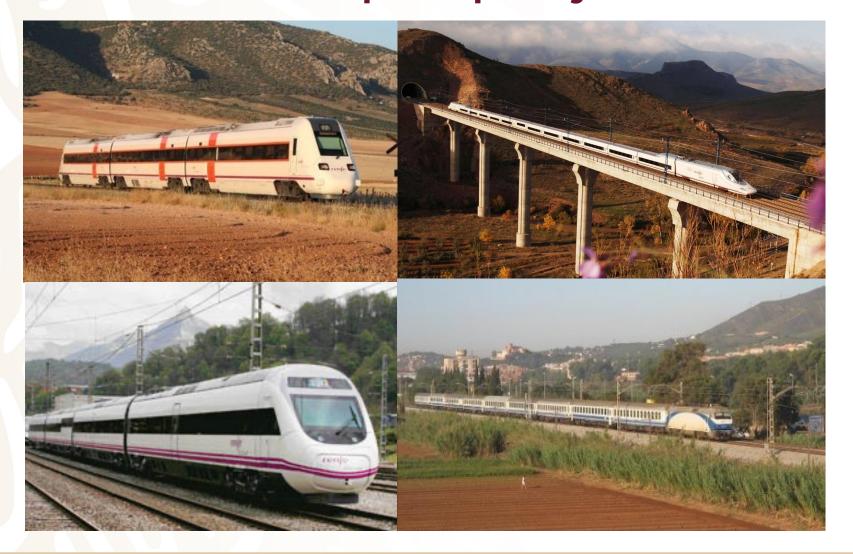
Los trenes autopropulsados pueden clasificarse en:

- Tracción concentrada

Algunos apriorismos:

- Los trenes nuevos son buenos, los viejos, malos
 Eso no es cierto y solo depende del mantenimiento
- Los trenes regionales y de cercanías no requieren confort
 Todos los trenes deben tener cualidades adecuadas al servicio que prestan
- Los trenes de alta velocidad son lujosos
 Los trenes de altas prestaciones son para todo tipo de pasajeros

Algunos apriorismos:


- Servicios urbanos y suburbanos (tranvía, LRT, metro)
- Servicios suburbanos o de cercanías (50 km, frecuencia, capacidad)
- Servicios regionales (en ocasiones, difíciles de definir)
- Servicios Intercity diurnos
- Servicios de larga distancia nocturnos
- Servicios de alta velocidad (altas prestaciones)
- Servicios turísticos

En cualquier caso:

- El material rodante debe ser el adecuado a cada servicio
- En ocasiones, un mismo tren puede prestar servicios diferentes
- Los trenes no se compran en la tienda (pueden ser de ocasión)
- Los trenes necesitan un período de fabricación, formación del personal de conducción y de mantenimiento, homologación...
- Los trenes tienden a ser estándar y modulares (costes, LC)
- Los trenes aportan seguridad (robustez)

Desaparecer y aparecer

Los trenes que desaparecieron hace 30 o más años, no son los mismos que los que aparecen ahora

Ha habido un cambio tecnológico a la vez que el cambio generacional y ello conlleva un cambio cultural y de percepción del modo de transporte y de la movilidad

3.2 Tipo de servicios y categorías de vehículos

El material rodante para viajeros

Transición hacia movilidad sostenible Descarbonización en el corazón de los ODS

Limitar el Calentamiento Global

Acuerdo de París de 2015. Neutralidad emisiones 2050. 2°C aumento de temp.

Limitar la Polución Urbana

Endurecimiento límites OMS de calidad del aire.

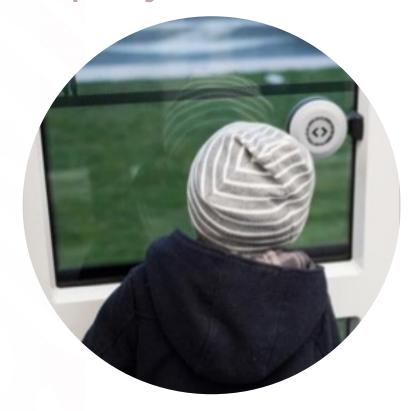
Aumento diesel ban ~2040.

Reducir dependencia de combustibles fósiles

Búsqueda global de alternativas.

Energías renovables como seguridad energética.

Los trenes que se fabriquen hoy circularán más allá de 2050



Transición hacia movilidad sostenible Del transporte a la movilidad

Los trenes transportan

Los pasajeros se mueven

El pasajero en el centro del diseño

Tipo de servicios

Categorías de vehículos

Características en función de las necesidades

Tranvías y	
metros	ligeros

70-80 km/h, paradas frecuentes, alta aceleración, frenado urbano Volúmenes limitados de pasajeros, numerosos de pie Compatibilidad con calles, rotura rígida, seguridad peatonal...

Metro

90-110 km/h, paradas frecuentes, alta aceleración Grandes volúmenes de pasajeros, gran mayoría de pie Operaciones dentro de túneles, tiempos de permanencia cortos

Trenes de cercanías

120-140 km/h, aceleración media o alta Grandes volúmenes de pasajeros, numerosos de pie Versatilidad dentro y fuera del centro de la ciudad

Categorías de vehículos

Características en función de las necesidades

Trenes de cercanías

120-140 km/h, aceleración media o alta, distancias cortas y medias Grandes volúmenes de pasajeros, **numerosos de pie** Versatilidad dentro y fuera del centro de la ciudad

Trenes regionales media y larga distancia servicios turísticos 120-160 km/h, a veces 200 km/h, distancias medias y largas Principalmente sentados, casos intermedios sentados y de pie Líneas de baja y media densidad, servicios a bordo, casos de piso bajo

Locomotoras + coches

140-160-200 km/h, esfuerzo de tracción variado, largas distancias Requerimientos locomotoras: muy variados, versatilidad Requerimientos coches: equivalentes a trenes regionales

Trenes de alta velocidad

200-350 km/h, potencia, aerodinámica, distancias medias y largas Estabilidad, pasaje **sentado**, vida a bordo de pie (bar, aseos...) Altos niveles de **confort**, **servicios** e instalaciones a bordo...

3.3 Tipologías y configuraciones

El material rodante para viajeros

Configuraciones de material rodante

Propulsado Self-propelled

Locomotive Locomotive

mercancías y/o pasajeros

Multiple Unit

pasajeros

Coche

Coach, carriage, passenger car

pasajeros

Vagón Wagon, freight car

mercancías

Material rodante
Rolling Stock

Remolcado Trailer Tracción distribuida

concentrada

Tracción

Material rodante de pasajeros

No articulado

Dos pisos

Combinación 1 y 2 pisos

Piso bajo

Material rodante convencional

Tren reversible Push-Pull

Tracción múltiple

Convencional

simple

Pros

- Flexibilidad en la composición
- Estandarización vehículos
- Independencia vehículo motor (adquisición/mantenimiento)

Arquitectura de tracción

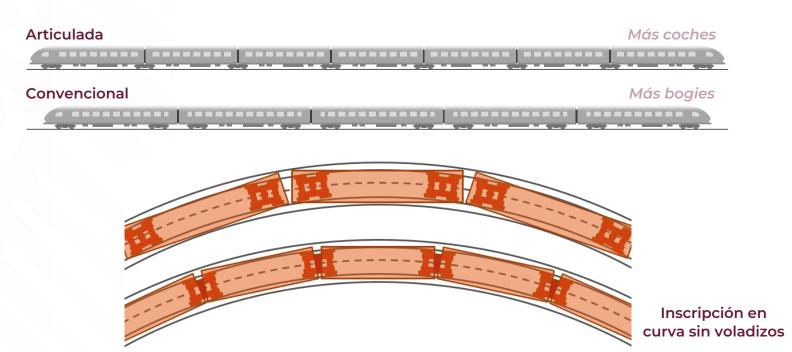
Tracción distribuida

Tracción concentrada

Coches remolcados todo el volumen disponible para viajeros

Tracción distribuida

- Aumento de capacidad
- Pero mayor complejidad, mayor número de elementos, mayor cableado... Recomendable en unidades cortas (<100-150 metros) por precio y capacidad



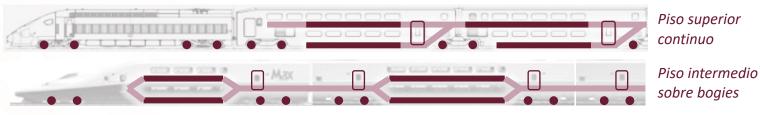
Arquitectura articulada

Pros

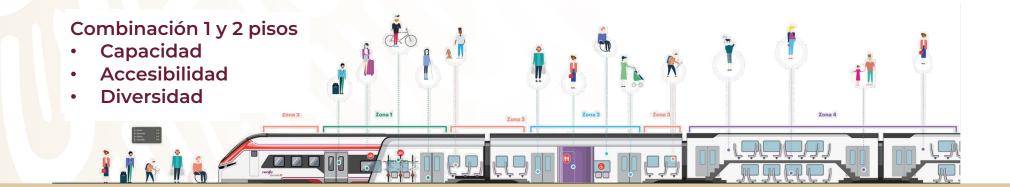
- Seguridad: comportamiento ante descarrilamiento, encabalgamiento, impacto
- Eficiencia: menor número de bogies -> mantenimiento, aerodinámica y energía
- Confort: comportamiento dinámico, rodadura entre coches

A cambio de

Peso por eje, acoplado/desacoplado, número vehículos y componentes



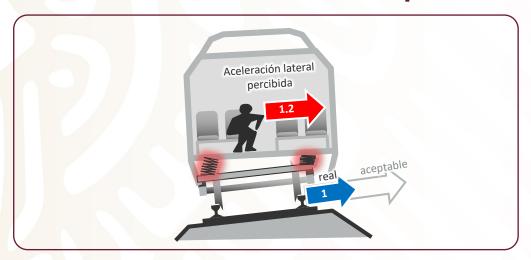
Dos pisos



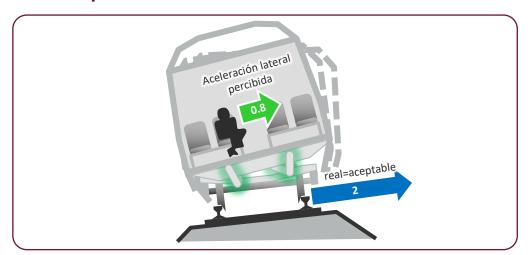
Observaciones

- Capacidad máxima utilización volumen disponible
- Mayor coste por coche (estimación 50% UNIFE)
- Estructura rígida pero compleja de diseñar
- Accesibilidad: inconvenientes (escaleras) y ventajas (piso bajo)

Acceso en piso bajo



Configuración basculante


En líneas con curvas:

- El peralte compensa parte de la aceleración lateral
- Reducción confort por aceleración no compensada
- La velocidad se limita en curva por confort

Bascular o inclinar el coche:

- Aumenta el confort
- Permite mayor velocidad
- No precisa modificar la infraestructura

3.4 Características principales

El material rodante para viajeros

Requerimientos esenciales Capacidad y tiempo de viaje

Capacidad del tren

- Arquitectura articulación, tracción, pisos
- o Longitud, anchura
- o Disposición interior
- Confort
- Servicios a bordo

Capacidad del sistema

- Capacidad del tren
- Prestaciones del tren
- Duración de paradas
- Capacidad de la línea
- Capacidad de la estación

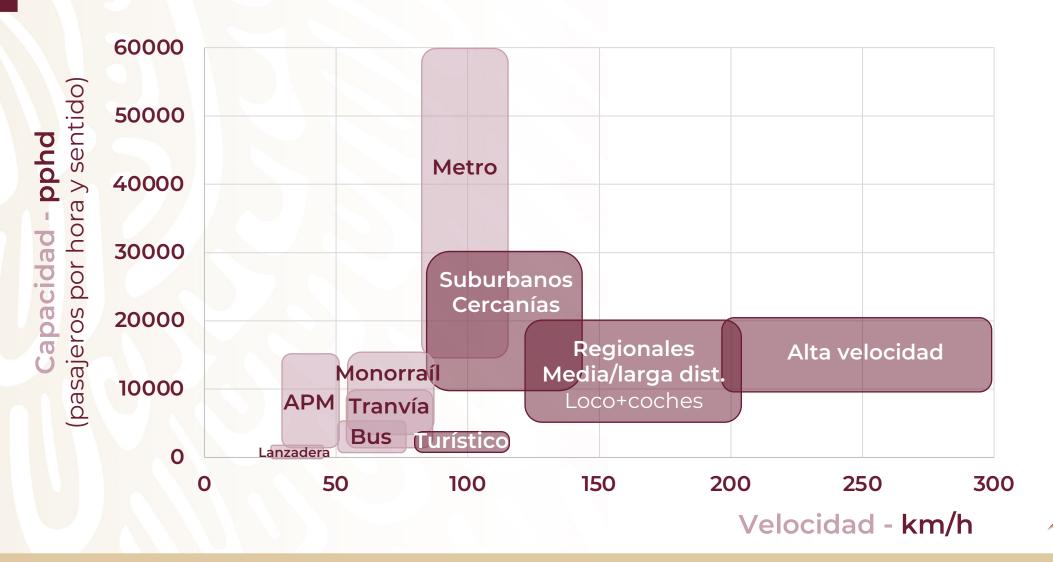
Requerimientos esenciales Capacidad y tiempo de viaje

Tiempo de viaje

- Velocidad máxima
- Potencia (rampa)
- Aceleración
- Deceleración
- Basculación
- Duración de paradas

Tiempo de viaje puerta-a-puerta

- o Tiempo en el tren
- o Tiempo en la estación
- Tiempo entre origen y estación + estación y destino localización, intermodalidad...



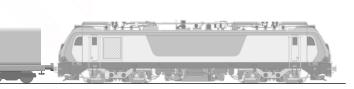
Requerimientos esenciales Capacidad y tiempo de viaje

Compatibilidad con infraestructura y entorno

- ·Gálibo (loading gauge): dinámico y estático, recta, inscripción en curva, línea, taller...
- ·Ancho de vía (track gauge): y características del rail (ángulo, perfil, material...).
- ·Radio de curva (curve radius): línea general, taller, condiciones específicas, contracurva...
- ·Alimentación (power supply): tensión, frecuencia, corriente...
- ·Catenaria (catenary): altura, descentramiento, material, tensión, esfuerzo vertical...
- ·Señalización (signalling): compatibilidad vehículo, visibilidad, equipo embarcado, captación...
- ·Sistemas de detección (detection systems): circuitos de vía, contadores de ejes, cajas calientes...
- ·Compatibilidad electromagnética (EMC): normativas, instalaciones, señalización, entorno...
- ·Andén (platform): altura, longitud, distancia horizontal, distribución puertas...
- ·Túnel (tunnel): sección, longitud, velocidad, evacuación, ondas de presión, tipología...
- ·Taller (depot/workshop): dimensiones, características, equipamiento...
- ·Clima (climate): rango/variación temperatura, humedad, nieve, helada...
- ·Ambiente (environment): salinidad, arena, polvo de desierto...

3.5 Características comerciales

El material rodante para viajeros



El transporte de personas La diferencia está en la "carga"

La "carga" del material rodante de pasajeros puede ser:

- muy delicada temperatura, dinámica, necesidades fisiológicas...
- muy exigente confort, iluminación, calidad, servicios, urgencia, puntualidad...
- e incluso incívica vandalismo, agresión, robo...

Bienvenida a bordo

Espacios y ergonomía

- Ambientes: número, características, diferenciación...
- Asientos: tipo, equipamiento, funcionalidad...
- Equipaje: tipos, volumen, visibilidad, distribución...
- **Especial:** bicicletas, cochecitos, esquís, tablas surf, instrumentos...

Accesibilidad y diseño universal

- Deambulación: acceso, movilidad a bordo...
- Aprehensión: asideros, barras, pomos, fijaciones...
- · Localización: etiquetado, braille, iluminación...
- Comunicación: sincronizada, multicanal...

Vida a bordo

Restauración

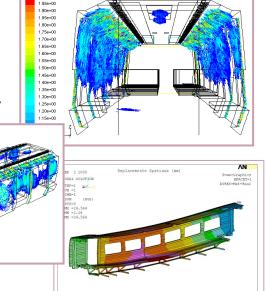
- Zonas dedicadas: coche bar, restaurante, autoservicio...
- A la plaza: incluido, a demanda, zonas, servicio...

Comunicación

- Información: visual, sonora, automática, remota, manual...
- Conectividad: cobertura telefonía, WiFi, Internet a bordo...

Entretenimiento

- Multimedia: vídeo, audio, portal contenidos, zonas multimedia...
- Otros: zonas especiales, equipos, guardería, multifuncional...


Confort y percepción

Confort

- **Térmico:** normativa, distribución y gradiente, frío/calor, corrientes...
- Acústico: ruido, frecuencias, repetición, inteligibilidad...
- Dinámico: movimiento lateral, longitudinal, vertical, intensidad, frecuencia...
- Vibratorio: localización, intensidad, frecuencia...

Percepción

- Iluminación: directa/indirecta, temperatura color, regulación...
- Estética: diseño y estilo, materiales, colores...
- Calidad percibida: acabados, ajustes, alineamiento, calidades...

Higiene y seguridad

Higiene

- Aseos: cantidad, distribución, equipamiento, capacidad...
- Limpieza: diseño sin esquinas, accesible, materiales, servicio...
- Residuos: papeleras, reciclaje, servicio...

Seguridad

- Videovigilancia: distribución, almacenaje, operación...
- Antivandalismo: interiores, pintura antigraffitti...
- Protecciones: candado equipaje, compartimentos...
- Cierres: tipo, control acceso...

Necesidades más básicas en la **Pirámide de Maslow**

3.6 Características de explotación

El material rodante para viajeros

Características de explotación

Personal de conducción

- Acceso: desde andén, desde la vía, en emergencia, evacuación...
- · Cabinas de conducción: ergonomía, visibilidad, climatización...


Personal de servicio al viajero

- Dependencias: para atender al cliente, para el personal...
- Servicios al pasajeros: instalaciones, equipos, almacenaje...
- Sistemas, interfonía, megafonía: localización, uso, redundancia...

Personal de asistencia técnica

- Autodiagnóstico: automático, a demanda, cabina, tablet...
- Conexión remota: pupitre, resolución averías, descargas...

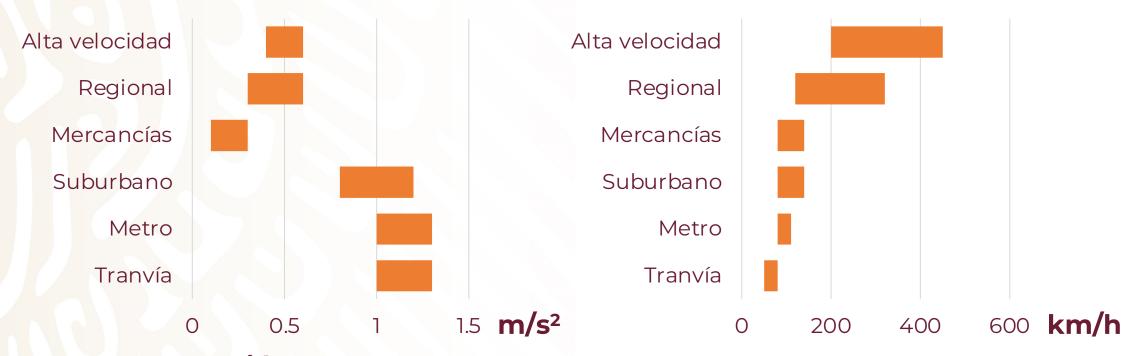
3.7 Tecnologías de tracción

El material rodante para viajeros

Prestaciones de tracción Criterios de dimensionamiento

Criterios de dimensionamiento:

- Máximo esfuerzo en rueda
 Para iniciar el movimiento
- Máxima velocidad en servicio
 Para respetar el horario
- o Máxima **potencia** de los motores Para proporcionar la dinámica aceleración, velocidad, freno



Prestaciones de tracción Aceleraciones y velocidades habituales

Máxima aceleración aproximada

Máxima velocidad en servicio

Tracción eléctrica Componentes principales

Captación de catenaria

Adaptación de tensión

Pilotado del motor

Motor

Disyuntor

Transformador

Convertidor de tracción

Motor

Tracción eléctrica Sistema reversible

Alterna: 15-25 kV Continua: 1500-3000 V 1500-1800 V 3000 V

Tracción

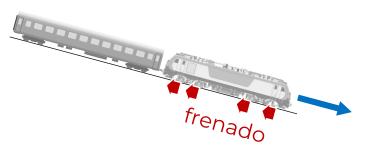
Captación de catenaria

Adaptación de tensión

Bus de corriente continua

Pilotado del motor

Motor


Devolución a catenaria

Adaptación de tensión

corriente

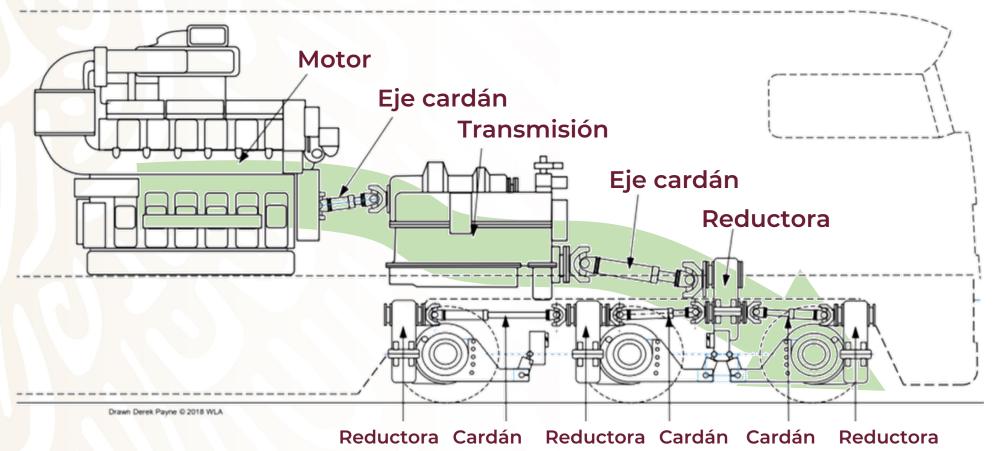
Pilotado del motor

Motor

Frenado regenerativo

Disipación calor

Frenado reostático



Tracción diésel Componentes principales

Ejemplo locomotora Western Class 52

Tracción diésel Tipologías

Tipos de motor

- Específicos ferroviarios potentes, fuertes, fiables pesados, grandes, caros
- Derivados de camión
 pequeños, ligeros, económicos
 menor fiabilidad y duración
 sólo aptos en algunos trenes

Los **motores derivados de camión** facilitan la tracción distribuida

La **transmisión eléctrica** facilita tracciones híbrida y dual

Tipos de transmisión

- Mecánica: casi no utilizado, par muy elevado
- Hidráulica: transmisión a través de sistema hidráulico
- Eléctrica: con un generador y sistema de tracción eléctrica

Tecnologías de tracción En Unidades Múltiples

EMU

- Pantógrafo
- Suministro energético: Catenaria
- Sólo en vías electrificadas

· DMU

- Diésel
- Suministro energético: Gasóleo
- Circulación en diésel bajo catenaria

DEMU

- Pantógrafo y diésel
- Suministro energético: Gasóleo y catenaria
- Diésel sólo necesario sin electrificación

Vía sin electrificar

Reducción de emisiones en vías sin electrificar

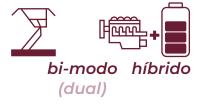
En Unidades Múltiples

Vía electrificada Vía sin electrificar

DEMU hybrid

- Pantógrafo, diésel y baterías
- Suministro energético: Gasóleo y Catenaria
- Batería para regeneración de energía

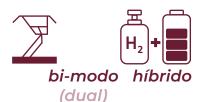
BEMU


- Pantógrafo, y baterías
- Suministro energético: Catenaria
- Batería para 80-100 km sin catenaria

FCMU

- Pila de combustible con baterías
- Suministro energético: Hidrógeno
- Batería para regeneración de energía

FCEMU


- Pantógrafo, pila de combustible, y baterías
- Suministro energético: Hidrógeno y/o Catenaria
- Batería para regeneración de energía

3.8 Tecnologías de frenado

El material rodante para viajeros

Introducción y principios

El contacto rueda carril

- Ofrece mínima resistencia al avance
- Pero también baja adherencia

El tren de pasajeros

- Transporta viajeros de pie
- La deceleración debe ser limitada

- Largas distancias de frenado
- Frenado inteligente

Sistema de control de deslizamiento

Criterios de dimensionamiento:

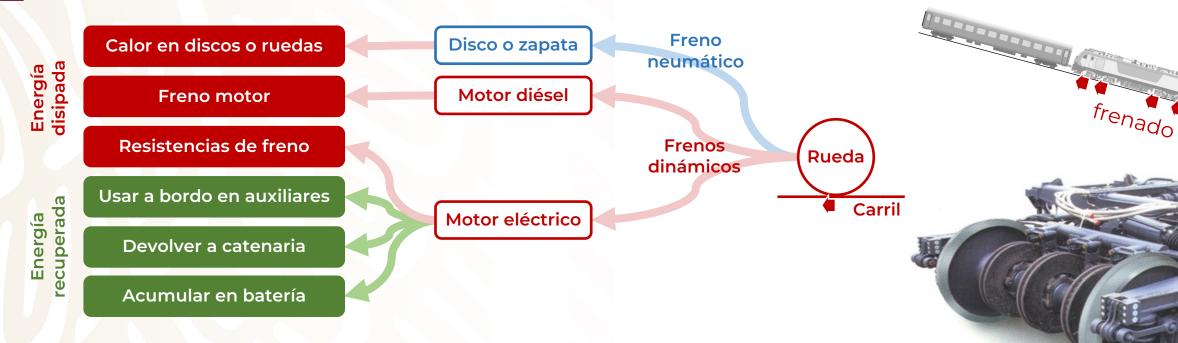
- Distancia de frenado
 Seguridad
- Deceleración máxima

Confort

 Energía disipada en freno Integridad

Principios:

- Margen en el cálculo
 Considerar baja adherencia disponible (15%)
- Margen en la arquitectura
 Freno todos los ejes del tren



Tecnologías de frenado

Basadas en adherencia rueda-carril

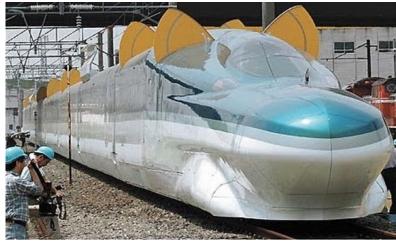
Freno conjugado o blending

- Combinación automática entre freno neumático y dinámico
- Optimiza uso de adherencia y reduce uso de freno neumático

Tecnologías de frenado Independientes de la adherencia rueda-carril

Otras tecnologías de frenado

- Freno magnético (Eddy-current brake) induce corrientes de Foucault en el raíl
- Freno de patín (electromagnetic shoe/pad) patín de fricción imantado al raíl
- Freno aerodinámico sólo utilizado en prototipo


Ventajas:

- Alternativa cuando falta adherencia rueda-carril
- Reducción distancia de frenado
 Patín utilizado en tranvías (compatibilidad tráfico urbano)
 Patín y magnético usado en algunas vías alemanas

Uso muy limitado:

- Coste
- Afección infraestructura calentamiento raíl, degradación, interferencia electromagnética

